LEFT RECURSION

DEFINITIONS

- A grammar is said to be left-recursive if it has a non-terminal A s.t. there is a derivation A ⇒ Aα for some string α of terminals and non-terminals.
- Immediate or simple left-recursion is when the grammar contains a production of the form $A \rightarrow A\alpha$ for some string α of terminals and non-terminals.

ELIMINATING LEFT RECURSION

- Eliminating simple left-recursion:
 - $S \rightarrow S\alpha | \beta$ where $\alpha, \beta \in (N \cup T)^*$ but don't start with S
 - Language generated is $\beta \alpha \dots \alpha$ (0 or more α 's) = $\beta \alpha^*$
 - Replace by $S \rightarrow \beta S'$
 - $S' \rightarrow \alpha S' \mid \varepsilon$
- More complex situation:
 - $\ S \xrightarrow{} S\alpha_1 \mid \ldots \mid S\alpha_n \mid \beta_1 \mid \ldots \mid \beta_m$

where α 's, β 's \in (N \cup T)* but don't start with S

- Replace by: $S \rightarrow BS'$ $B \rightarrow \beta_1 \mid \dots \mid \beta_m$ $S' \rightarrow \varepsilon \mid \alpha_1 S' \mid \dots \mid \alpha_n S'$
- Eliminating general left recursion:
 - Make a list of all non-terminals in an order
 - For each non-terminal
 - Examine all its productions. If the right-hand side begins with a nonterminal earlier in the list (e.g. $B \rightarrow A\beta$)
 - 1. Try to reorder B before A if it solves the problem,
 - 2. Otherwise look at the earlier productions.
 - If these are: $A \rightarrow \alpha_1 \mid \ldots \mid \alpha_n$
 - •Substitute $B \rightarrow \alpha_1 \beta \mid \ldots \mid \alpha_n \beta$
 - Continue until no right-hand side begins with a non-terminal earlier in the list.
 - Remove the immediate left recursions (if any) for this non-terminal